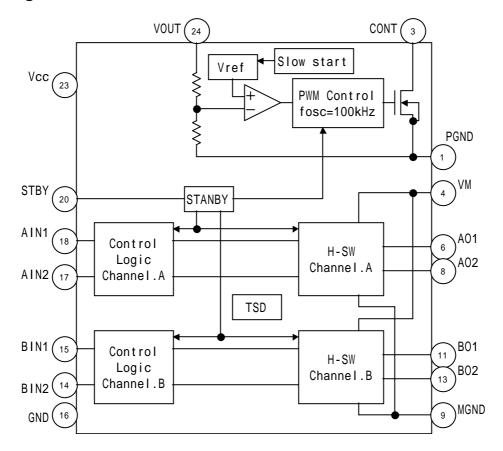

TOSHIBA Bi-CDMOS Integrated Circuit Silicon Monolithic

TB6594FLG

Dual DC motor driver with built-in DC-DC Converter

TB6594FLG is DC motor driver that uses low ON-resistance LDMOS transistors for the output block.

two inputs (IN1, IN2) are used to drive a DC motors in forward and reverse and short-breake and stop directions.


Weight: 0.05 g (typ.)

Features

- Motor supply voltage: $V_M \le 5.5 \text{ V (max)}$
- Control supply voltage: V_{CC} = 2.7 V to 5.5 V
- Output current: $I_{out} \le 0.8 \text{ A (max)}$
- Low ON-resistance: 1.5 ohm(upper side + lower side typ. $@V_M = 5V$)
- Forward/Reverse/short beake/stop mode control
- Built-in PWM DC-DC converter circuit (+5V output)
- Standby (power-saving) mode
- On-chip thermal shutdown circuit (TSD)
- Package: QON24

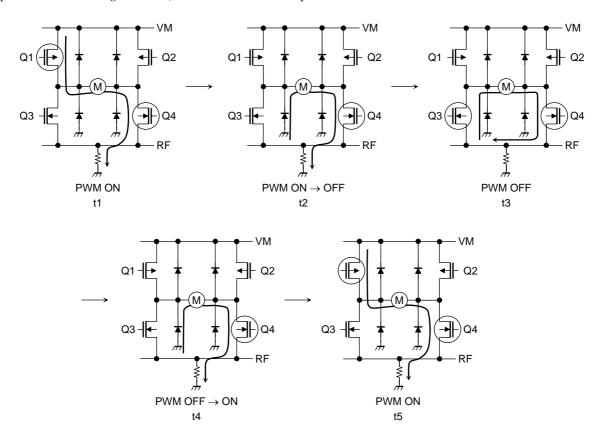
Note: This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at reasonable levels.

Block Diagram

Pin Functions

PinNO.	Pin name	Functional Description	Remarks
1	PGND	GND pin for DC-DC	
2	(NC)	Non connect	
3	CONT	DCDC switching pin	External inductor connect
4	VM	Motor power supply	VM=2.2 ~ 5V
5	(NC)	Non connect	
6	AO1	OutputA1 (for motor A)	
7	(NC)	Non connect	
8	AO2	OutputA2 (for motor A)	
9	MGND	GND pin for motor	
10	(NC)	Non connect	
11	BO1	OutputB1 (for motor B)	
12	(NC)	Non connect	
13	BO2	OutputB2 (for motor B)	
14	BIN2	Control InputB2 (fot motor B)	
15	BIN1	Control InputB1 (for motor B)	
16	GND	GND pin for small signal	
17	AIN2	Control InputA2 (fot motor A)	
18	AIN1	Control InputA1 (for motor A)	
19	(NC)	Non connect	
20	STBY	Standby control	"L"=standby (all-off)
21	(NC)	Non connect	
22	(NC)	Non connect	
23	Vcc	Power supply for small signal	Vcc=2.7V ~ 5V
24	VOUT	DC-DC output	+5V (typ.)

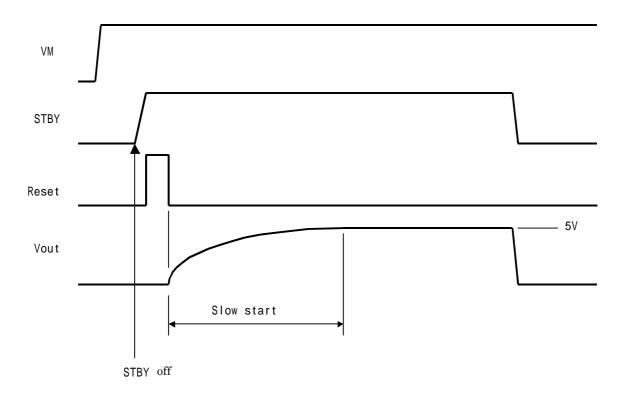
Truth Table


	Input		Output			
IN1	IN2	STBY	OUT1	OUT2	Mode	
Н	Н	Н	L	L	Short breake	
L	Н	Н	L	Н	Reverse	
Н	L	Н	Н	L	Forward	
L	L	Н	OFF		Stop	
HorL	HorL	L	OFF		Standby	

Operating Description

PWM control function

When PWM control is activated, normal operation and short brake operation are repeated.


To prevent shoot-through current, dead time t2 and t4 is provided in the IC.

DC-DC Converter

STBY	Vout (DCDC output)	remarks
L	Standby (off)	Sw Tr.:off
Н	Output ON (+5V)	Slow start sequence

VM on STBY off ("L" "H") internal Logic Reset Slow start Vout = +5V constant voltage control

2005/06/02

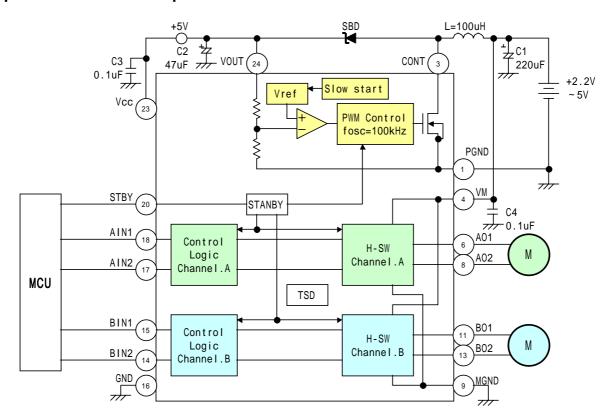
4

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit	Remarks		
Dower cupply voltage	VM	5.5	V	Power supply for motor		
Power supply voltage	Vcc	5.5	v	Power supply for small signal		
Input voltage	VIN	-0.2 ~ 5.5	V	AIN1,AIN2,BIN1,BIN2,STBY		
Output valtaget	Vout	5.5	V	AO1,AO2,BO1,BO2		
Output voltaget	Vcont	5.5	V	CONT pin		
Output ourrent	lout	0.8	۸	AO1,AO2,BO1,BO2		
Output current	Icont	0.5	Α	CONT		
Power dissipation	PD	0.78	W	Note		
Operating temperature	Topr	-20 to 85				
Storage temperature	Tstg	-55 to 150				

Note : When mounted on a glass-epoxy PCB (50 mm \times 30 mm \times 1.6 mm, Cu area: 40%)

Operating Range ($Ta = -20 \text{ to } 85^{\circ}\text{C}$)

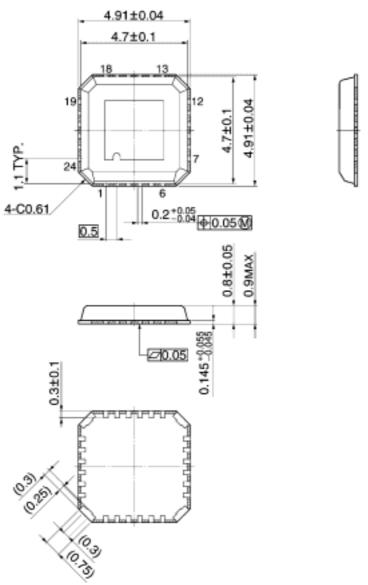

Characteristics	Symbol	Min	Тур.	Max	Unit
Power supply voltage (Vcc)	Vcc	2.7	3	5	V
Power supply voltage (V _M)	V _M	2.2	3	5	V
Output current (for motor)	I _{OUT}		_	0.6	Α

Electrical Characteristics (Unless otherwise specified, $V_{CC}=3~V,~V_{M}=5~V,~Ta=25^{\circ}C$)

	Characteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
	Output voltage	Vout			4.75	5	5.25	
	Input voltage	VIN	lout=1mA				5	V
	DCDCStart level	VST1					2.2	
	OSC start lebel	VST2	No load,Vout sweep				2	
	DCDC hold level	VLD	lout=1mA,VIN sweep				1.9	i
		lout1	No load,Vout=4.75V			420	600	μА
	Supply current	lout(STB)	STBY=0V	\		0	0.5	
DC-DC Circuit	Ron SWTr	Rsw(on)	VCONT=0.4V	VM= 2.4V		1	2	
Circuit	Leakage of SWTr	ILCONT	VOUT=VCONT=5.5V	2.40		0	1	μА
	Regural line	△ Vout	VM=2.2V to 3V			10	60	
	Regular load	Vo load	lout=10µ A to 50m A			150	250	m V
	Osc frequency	fosc	1000 10p 7110 00m71		70	100	130	k Hz
	Max duty ratio	Maxduty	=		78	87	92	%
	Effiency	EFFI				80		
	Slow start time	Tss	RL=5kohm		2.5	5	7.5	m s
	Supply current	Icc	STBY=Vcc			0.23	0.5	m A
		Icc(STB)	0=0/4 0/4			0	1	
		IM(STB)	STBY=0V			0	1	μA
	Input voltage	VIH			2		Vcc +0.2	V
		VIL			-0.2		0.8	
		VIN(hys)	(Design guarantee)		0.2			
		IIH	VIN=3V	5	15	25	μА	
	Input current	IIL	VIN=0V		0	1		
H-SW circuit	Input voltage	VIH(STB)			2		Vcc +0.2	V
	(standby pin)	VIL(STB)			-0.2		0.8	
	Input current	IIH(STB)	VIN=3V		15	40	80	μА
	(standby pin)	IIL(STB)	VIN=0V			0	1	
		Vsat	Io=0.2A Io=0.6A			0.2	0.4	
	Output saturating voltage	(U+L)				0.6	1.2	V
-		IL(U)				0	1	μА
	Output leakage	IL(L)	VM=5.5V,AO1,2,BO1,2=0V		-1	0		
		VF(U)	IF=0.6A			0.9	1.2	V
	Diode forward voltage	VF(L)				0.9	1.2	
TSD	Thermal shutdown circuit operating temperature	TSD	(Design guarantee)			170		
	Thermal shutdown hysterisis	△ TSD				20	-	

6

Application Circuit Example

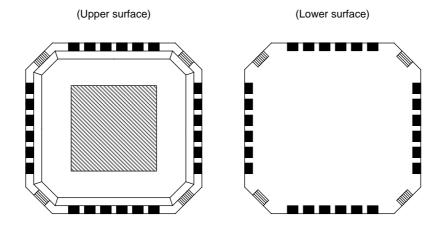

Note: Noise suppression capacitors and oscillator capacitors should be connected as close as possible to the IC.

7

2005/06/02

Package Dimensions

QON24-P-0505-0.50 Unit: mm



- Note 1) The solder plating portion in four corners of the package shall not be treated as an external terminal.
- Note 2) Don't carry out soldering to four corners of the package.
- Note 3) area : Resin surface

Weight: 0.05 g (typ.)

Requests Concerning Use of QON

Outline Drawing of Package

When using QON, please take into account the following items.

Caution

Do not carry out soldering on the island section in the four corners of the package (the section shown on the lower surface drawing with diagonal lines) with the aim of increasing mechanical strength.

The island section exposed on the package surface (the section shown on the upper surface drawing with diagonal lines) must be used as (Note 6) below while electrically insulated from outside.

Note 6: Ensure that the island section (the section shown on the lower surface drawing with diagonal lines) does not come into contact with solder from through-holes on the board layout.

- When mounting or soldering, take care to ensure that neither static electricity nor electrical overstress is applied to the IC (measures to prevent anti-static, leaks, etc.).
- When incorporating into a set, adopt a set design that does not apply voltage directly to the island section.

RESTRICTIONS ON PRODUCT USE

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to

property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability

Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.